Tesi di Dottorato di ricerca in "Sistemi energetici ed Ambiente" XII ciclo - triennio 1997-1999

Università degli Studi di Lecce

Metodologie di caratterizzazione degli spray Diesel

Coordinatore: prof. Saverio MONGELLI Relatore: prof. Domenico LAFORGIA Dottorando: ing. Giuseppe STARACE

Caratterizzazione idraulica

- Flussaggio del polverizzatore
- Impostazione dei tempi di eccitazione del magnete di comando
- Indagine sulla quantità iniettata foro per foro.

Caratterizzazione fotografica

• "Singolo foro" e "tutti i fori"

•Tecnica della Backlight Photography

• Animazione della sequenza di fotogrammi

Caratterizzazione granulometrica

•Laser Diffraction Tecnique (MALVERN Series 2600)

• PDPA Analysis (Aerometrics DSA 4000)

Caratterizzazione velocimetrica

•Laser Doppler Velocimetry (Aerometrics DSA 4000)

5 fori simmetrico 6 fori simmetrico Set di 9 iniettori 5 fori simmetrici

INIETTORE MECCANICO SINGOLO FORO

FIAT CROMA 1930 cm³

CONDIZIONI DI PROVA

Caratterizzazione idraulica - I tempi dell'iniezione

E.T. = Tempo di eccitazione T.A.S. = Tempo di alzata spillo T.R.I.I. = Ritardo di inizio iniezione T.R.F.I. = Ritardo di fine iniezione

•Flussaggio → PERMEABILITA' POLV.
•Banco BOSCH 615A→ Quantità iniettate
•Banco Hartridge→ proprietà Singola iniezione, statistiche e ripetitività

Caratterizzazione idraulica - I tempi dell'iniezione

Indagine sulla quantità iniettata foro per foro

QUANTITA' INIETTATE PER SINGOLO FORO

La strumentazione - La camera di iniezione

Caratterizzazione fotografica e video

Sequenze fotografiche e video "Singolo foro" e "Tutti i fori"

Proprietà macroscopiche

Caratterizzazione fotografica e video

Sequenza fotografica per singolo foro

Delay = $300 \ [\mu s]$ $400 \ [\mu s]$ $450 \ [\mu s]$ $600 \ [\mu s]$ $900 \ [\mu s]$ $1050 \ [\mu s]$ $1150 \ [\mu s]$ $1250 \ [\mu s]$

Pressione di alimentazione = 120 [MPa], Quantità iniettata = 25 [mm³/shot]

Caratterizzazione granulometrica Laser Diffraction Tecnique (MALVERN)

Caratterizzazione granulometrica Laser Diffraction Tecnique (MALVERN)

2 kgm 4 kgm 6 kgm 8 kgm 10 kgm

Polverizzatore SACLESS UNI 380 249 - k=1,5 - 220 cc/30"

Polverizzatore MINISAC UNI 188 094 - k=0 - 220 cc/30"

Caratterizzazione granulometrica e velocimetrica. PDPA Laser Technique (AEROMETRICS)

Allestimento del banco di analisi spray Ottimizzazione della tecnica - PDPA presso il Politecnico di Bari

- Apparato di iniezione Iniettore Fiat 1930 cm³
 - Apparato di rimozione dei vapori di gasolio
 - Struttura di sostegno di movimentazione
 - Sincronizzazione
 - Acquisizione e risultati

Banco di analisi spray e ottimizzazione della tecnica di analisi - PDPA

Velocità assiale massima

Number Density

VELOCITA' ASSIALE

CONCLUSIONI

• Si sono individuate le caratteristiche dello spray e la loro dipendenza dalle condizioni di alimentazione

•Le asimmetrie degli iniettori multiforo sono fondamentalmente di origine dinamica

• La tecnica PDPA non centra lo scopo in presenza di spray densi, ma consente una valutazione accettabile con pressioni di alimentazione basse